Health and nutrition situation in transition from nutrition deficiencies to lifestyle related diseases (non-communicable diseases).

Ulrich Oltersdorf

Outline of this lecture

World Food Situation -
 Overview

- Famine and Feast
- Food (In)Security
- Nutrition (In)Security

Health Problems related to Lifestyle
Obesity Epidemic and related Health Risks

Which role played the nutrition in the evolution?

100.000 generations between feast and famine

Neolithikum
300 generations in large constance of the food supply

Modern

2-3 Generations of foodfeast

Food Insecurity - today

The Indicator - poor growth of children

Table 3. Estimates of Underweight Children in 1990 and 2015

Region	Estimates (95\% CI), in millions		Percentage of Relative Change (95\% CI)
	1990	2015	
Africa			
Entire region	25.8 (25.2 to 26.3)	43.3 (42.2 to 44.4)	68.3 (62.7 to 74.1)
Northern	1.6 (1.4 to 2.0)	0.7 (0.3 to 1.3)	-59.3 (-80.2 to -16.5)
Sub-Saharan*	24.1 (21.5 to 26.7)	42.7 (37.9 to 47.5)	76.9 (51.5 to 106.6)
Eastern	9.5 (7.8 to 11.4)	19.1 (15.8 to 22.7)	101.6 (56.2 to 160.0)
Middle	3.7 (2.6 to 5.0)	6.3 (4.7 to 8.2)	71.5 (13.4 to 159.4)
Southern	0.8 (0.6 to 1.1)	0.7 (0.5 to 1.0)	-13.9 (-46.5 to 38.4)
Western	8.8 (7.4 to 10.2)	13.5 (10.9 to 16.4)	53.6 (19.4 to 97.6)
Asia			
Entire region	131.9 (119.2 to 144.7)	67.6 (53.4 to 81.7)	-48.8 (-59.3 to -35.5)
Eastern	23.1 (22.0 to 24.2)	3.0 (2.8 to 3.2)	-86.9 (-88.0 to -85.8)
South Central	86.0 (73.5 to 98.5)	52.1 (39.9 to 66.3)	$-39.4(-54.7$ to -19.0$)$
Southeastern	20.2 (17.6 to 22.9)	9.7 (7.5 to 12.4)	-51.8(-63.6 to -36.0)
Western	2.7 (2.1 to 3.5)	2.7 (0.4 to 12.1)	0.4 (-82.7 to 483.3)
Latin America			
Entire region	4.8 (3.4 to 6.2)	1.9 (1.1 to 2.7)	-60.2 (-76.1 to -33.8)
Caribbean	0.4 (0.2 to 0.7)	0.1 (0.05 to 0.20)	-74.2 (-89.3 to -37.4)
Central	1.9 (1.2 to 3.1)	0.9 (0.5 to 1.8)	$-51.9(-79.0$ to 10.3)
South	2.5 (1.6 to 3.8)	0.9 (0.5 to 1.5)	-64.4 (-82.2 to -28.8)
Developing regions	162.6 (149.8 to 175.5)	112.8 (98.6 to 127.1)	$-30.6(-40.2$ to -19.5$)$
Developed countries \dagger	1.2 (0.6 to 2.4)	0.6 (0.1 to 2.6)	-54.1 (-93.9 to 244.4)
Entire world	163.8 (151.0 to 176.7)	113.4 (99.2 to 127.6)	$-30.8(-40.3$ to -19.7$)$

Abbreviation: Cl , confidence interval.
*Comprises the regions of Eastem, Middle, Southern, and Westem Africa and Sudan.
\dagger Europe, Japan, Australia, Canada, and United States.

1900	Percent	2000	Percent
Tuberculosis	11.3	Heart disease	31.4
Preumonia	10.2	Cancer	23.3
Diarrhea diseases	8.1	Stroke	6.9
Heart disease	8.0	Lung disease	4.7
Liver disease	5.2	Accidents	4.1
Injuries	5.1	Pneumonia/influenza	3.7
Stroke	4.5	Diabetes mellitus	2.7
Cancer	3.7	Suicide	1.3
Bronchitis	2.6	Kidney disease	1.0
Diphtheria	2.3	Liver disease and cirrhosis	1.0
Total top ten	61.0		80.1
Cata from Nestie M. Food Poittes. Berkeley, CA: Unversty of Caltomia Prass; 2002.			

Evolution?

Evolution of the Hominiden

Food involved in food borne disease outbreaks in the WHO European Region, 1993-1998

Source: WHO Regional Office for Europe.

Classification of overweight in adults according to BMI ${ }^{\text {a }}$

Classification	$\mathrm{BMI}\left(\mathrm{kg} / \mathrm{m}^{2}\right)$	Risk of comorbidities
Underweight	<18.5	Low (but risk of other clinical problems increased) Average
Normal range	$18.5-24.9$	
Overweight	$\geqslant 25.0$	Increased
Pre-obese	$25.0-29.9$	Moderate
Obese class I	$30.0-34.9$	Severe
Obese class II	$35.0-39.9$	Very severe
Obese class III	$\geqslant 40.0$	

The relationship between body weight, measured by BMI, and the relative risk of mortality

Note: This figure is based on data from a study of female nurses in the United States. Studies for all adults imply a similar relationship between BMI and risk of mortal ity in men.
Source: Manson I E., WWet W. C., Stampfer M. I (1995). "Bodyweight and mortality among women" - New England Joumal of Medicine.

Estimated increased risk for the obese of developing associated diseases, taken from international studies

Disease	Relative risk - women	Relative risk - men
Type 2 Diabetes *	12.7	5.2
Hypertension	4.2	2.6
Myocardial Infarction	3.2	1.5
Cancer of the Colon	2.7	3.0
Angina	1.8	1.8
Gall Bladder Diseases	1.8	1.8
Ovarian Cancer	1.7	-
Osteoarthritis	1.4	1.9
Stroke	1.3	1.3

* Non-insulin dependent diabetes mellitus (NIDDM)

Note: The BMI range for the obese and non-obese groups used to estimate relative risk varies between studies, which limits the comparability of these data.

Source: National Audit Office estimates based on literature review (Appendix 6)

Source: NationalAudit Office based on classifications used in the Health Survey for England ${ }^{1}$

Fig. 4. Apple shape or pear shape

Obesity Trends* Among U.S. Adults BRFSS, 1991-2002

(*BMI " 30, or ~ 30 lbs overweight for 5' 4" woman)

Prevalence of adult obesity in Europe $\mathrm{BMI}>30 \mathrm{kgm}^{2}$

Fig 1 Estimated relative prevalences of overweight and obesity in the EU

* Restricted age group. \square BMI 25-29
** O/wt from MONICA studies
$\mathrm{BMI} \geq 30$
* Restricted age group.
** O/wt from MONICA studies

EU Accession Countries

Overweight and obesity among school-age children (5.17 years)

Table 4 Prevalences (\%) of stunting, underweight, wasting and overweight among 2-5-year-old children; Iran National Health Survey, 1999

Prevalence (\%)

Condition	Urban ($n=2588$)	Rural ($n=1989$)
Stunted (height-for-age Z-score ≤-2)		
Boys	20.0	29.3
Giris	17.6	29.2
Underweight (weight-for-age Z-score ≤-2)		
Boys	14.0	22.9
Girls	17.7	14.2
Wasted (weight-for-height Z-score ≤-2)		
Boys	9.5	12.3
Girls	11.3	12.0
Overweight (weight-for-height Z-score $\geq+2$)		
Boys	11.0	6.9
Girls	9.0	7.3

Table 8 Prevalences (\%) of overweight and obesity (BMI of $25-29.9$ and $230 \mathrm{~kg} \mathrm{~m}^{-2}$, respectively) among adults by age and rural/urban residence; Iran National Health Survey, 1999

Adult category	Prevalence (\%)			
	Urban		Rural	
	Overweight	Obesity	Overweight	Obesity
Women				
$15-39$ years ($n=13185$)	24.5	12.3	18.5	6.9
$40-69$ years ($n=5534$)	38.9	27.9	31.3	15.6
$70+$ years ($n=877$)	30.4	15.6	21.6	6.7
Men				
$15-39$ years ($n=10029$)	21.2	4.7	14.3	2.2
$40-69$ years ($n=4746$)	39.8	11.0	22.5	6.2
$70+$ years ($n=953$)	28.5	5.7	16.5	3.0

Table 7

Summary of strength of evidence on factors that might promote or protect against weight gain and obesity ${ }^{\text {a }}$

Evidence	Decreased risk	No relationship	Increased risk
Convincing	Regular physical activity		Sedentary lifestyles
	High dietary intake of NSP (dietary fibre) ${ }^{\text {b }}$		High intake of energy-dense micronutrient-poor foods ${ }^{\text {c }}$
Probable	Home and school environments that		Heavy marketing of energy-dense foods ${ }^{d}$ and fast-food outlets ${ }^{\text {d }}$
	support healthy food choices for children ${ }^{\text {d }}$		High intake of sugars-sweetened soft drinks and fruit juices
	Breastfeeding		Adverse socioeconomic conditions ${ }^{\text {d }}$ (in developed countries, especially for women)
Possible	Low glycaemic index	Protein content	Large portion sizes
	foods	of the diet	High proportion of food prepared outside the home (developed countries)
			"Rigid restraint/periodic disinhibition" eating patterns
Insufficient	Increased eating frequency		Alcohol

The interlinking of physical inactivity and dietary effects on obesity and the progression of disease with industrialisation

Dietary change

Energy
density: \uparrow fat \&
refined CHOs

Physical inactivity

\downarrow BULK,
e.g. vegetables, tubers, cereals
\oplus

Phytoestro gens
bioactivate molecules

Antioxidants

Table 1. Features of the Metabolic Syndrome	
Central features	Other components
Central adiposity Microalbuminuria Dyslipidemia including Procoagulant state including increased plasma elevated levels of triglycerides, low plasma plsdminogen activator HDL cholesterol, and inhibitor-1, von Willebrand small dense LDL factor, fibrinogen, and factor cholesterol particles VIl Hypertension Inflammatory markers including elevated levels of C-reactive protein (CRP) and IL-6 Hyperglycemia Vascular abnormalties including elevated levels of intracellular adhesion molecule-1 and vascular cell adhesion Hyperinsulinemia molecule Abnormal glucose tolerance Insulin resistance Hyperuricemia	

Table 2. Clinical features of the Metabolic Syndrome

Fisk factor

Abdominal obesity (waist circumference) Men
Women
HDL cholesterol
Men
Women
Triglycerides
Fasting glucose
Blood pressure (SBP/DBP)

Defining level

$>102 \mathrm{~cm}(>40 \mathrm{in})$
$>88 \mathrm{~cm}(>35 \mathrm{in})$
$<40 \mathrm{mg} / \mathrm{dL}$
$<50 \mathrm{mg} / \mathrm{dL}$
$\geq 150 \mathrm{mg} / \mathrm{dL}$
$\geq 110 \mathrm{mg} / \mathrm{dL}$
$\geq 130 / \geq 85 \mathrm{~mm} \mathrm{Hg}$

EUROPE

Disease burden (DALYs) in 2000 attributable to selected leading risk factors

Table 11

Summary of strength of evidence on lifestyle factors and the risk of developing cancer

Evidence	Decreased risk	Increased risk
Convincing ${ }^{\text {a }}$	Physical activity (colon)	Overweight and obesity (oesophagus, colorectum, breast in postmenopausal women, endometrium, kidney) Alcohol (oral cavity, pharynx, larynx, oesophagus, liver, breast) Aflatoxin (liver) Chinese-style salted fish (nasopharynx)
Probable ${ }^{\text {a }}$	```Fruits and vegetables (oral cavity, oesophagus, stomach, colorectum}\mp@subsup{}{}{\textrm{b}}\mathrm{) Physical activity (breast)```	Preserved meat (colorectum) Salt-preserved foods and salt (stomach) Very hot (thermally) drinks and food (oral cavity, pharynx, oesophagus)
Possible/ insufficient	Fibre Soya Fish n-3 Fatty acids Carotenoids Vitamins B_{2}, B_{6}, folate, B_{12}, C, D, E Calcium, zinc and selenium Non-nutrient plant constituents (e.g. allium compounds, flavonoids, isoflavones, lignans)	Animal fats Heterocyclic amines Polycyclic aromatic hydrocarbons Nitrosamines

[^0]Summary of strength of evidence on lifestyle factors and risk of developing cardiovascular diseases

Evidence	Decreased risk	No relationship	Increased risk
Convincing	Regular physical activity	Vitamin E supplements	Myristic and palmitic acids Trans fatty acids High sodium intake Overweight High alcohol intake (for stroke)
	Linoleic acid		
	Fish and fish oils (EHA and DHA)		
	Vegetables and fruits (including		
	berries)		
	Potassium		
	Low to moderate alcohol intake (for coronary heart disease)		
Probable	α-Linolenic acid	Stearic acid	Dietary cholesterol Unfiltered boiled coffee
	Oleic acid		
	NSP		
	Wholegrain cereals		
	Nuts (unsalted)		
	Plant sterols/stanols		
	Folate		
Possible	Flavonoids		Fats rich in lauric acid
	Soy products		Impaired fetal nutrition
			Beta-carotene supplements
Inufficient	Calcium		Carbohydrates
	Magnesium		Iron
	Vitamin C		

[^1]
Summary of strength of evidence on lifestyle factors and risk of developing type 2 diabetes

$\begin{array}{lll}\text { Evidence } & \text { Decreased risk } & \text { No relationship }\end{array}$ Increased risk \(\left.$$
\begin{array}{ll}\text { Convincing } & \begin{array}{l}\text { Voluntary weight loss in } \\
\text { overweight and obese people } \\
\text { Physical activity }\end{array} \\
\text { Probable } & \text { NSP }\end{array}
$$ \begin{array}{l}Overweight and obesity

Abdominal obesity

Physical inactivity\end{array}\right\}\)| Maternal diabetes ${ }^{\text {a }}$ |
| :--- |

Summary of strength of evidence linking diet to osteoporotic fractures

Evidence	Decreased risk	No relationship	Increased risk
Convincing	Vitamin D		High alcohol intake
Older people ${ }^{\text {a }}$	Calcium		Low body weight
	Physical activity		
Probable		Fluoride ${ }^{\text {b }}$	
Older people ${ }^{\text {a }}$			
Possible	Fruits and vegetables ${ }^{\text {c }}$	Phosphorus	High sodium intake
	Moderate alcohol intake Soy products		Low protein intake (in older people)
			High protein intake

Summary of strength of evidence linking diet to dental caries

Evidence	Decreased risk	No relationship	Increased risk
Convincing	Fluoride exposure (local and systematic)	Starch intake (cooked and raw starch foods, such as rice, potatoes and bread; excludes cakes, biscuits and snacks with added sugars)	Amount of free sugars Frequency of free sugars
Probable	Hard cheese Sugars-free chewing gum	Whole fresh fruit	Undernutrition
Possible	Xylitol Milk Dietary fibre Whole fresh fruit		Dried fruits
Insufficient	When		

What are the causes for this situation?

Answers will be given in the next lecture

[^0]: a The "convincing" and "probable" categories in this report correspond to the "sufficient" category of the IARC report on weight control and physical activity (4) in terms of the public health and policy implications.
 ${ }^{\mathrm{b}}$ For colorectal cancer, a protective effect of fruit and vegetable intake has been suggested by many case-control studies but this has not been supported by results of several large prospective studies, suggesting that if a benefit does exist it is likely to be modest.

[^1]: EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; NSP, non-starch polysaccharides.

